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Abstract

Let x be an irreducible character of a finite group G. A. R. Miller conjectured that the proportion
of elements g € G such that x(g) is zero or a root of unity is at least 1/2. We construct a character
of a perfect group of order 69,120 such that this proportion is 511/1152 ~ 0.44.
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Let z € R\ {1} be an algebraic integer such that all Galois conjugates x1,...,z, of z are real and
positive. A well-known theorem of Siegel [9, Theorem III] states that
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with equality if and only if z = LQ\/B Thompson has observed that this theorem applies to z = |x(g)|?
for any character x of finite groups G and g € G. When Y is irreducible, the orthogonality relations

imply that the proportion of elements g € G such that x(g) is zero or a root of unity is at least 1/3,

A0 =[{g € G x(o) =00 o)l =1} = 15
(see |3, Problem 3.15]).

Siegel’s theorem has been improved many times, but the exact value of
A := liminf tr(z)
x

is still unknown. Most recently, Orloski-Sardari-Smith [8, p. 2010| proved that A > 1.80203. On the
other hand, the sequence {4 cos(27/p)? : p prime} shows that \ < 2.

Since character values are cyclotomic integers (i. e. integers of a cyclotomic field), it is expected that
stronger bounds can be given. In fact, Cassels [I, Lemma 3| proved for every cyclotomic integer x that
tr(|z|?) > 2 unless x is a sum of at most two roots of unity. Perhaps motivated by this result, Miller [4,
Conjecture 1| conjectured that A(x) > |G|/2 for all x € Irr(G) (see also [5, [6]). He proved this bound
for all nilpotent groups, among other cases. This was extended to all groups with a Sylow tower by
Moret6—Navarro [7, Theorem C|. The conjecture seems to be open for solvable groups.
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Using GAP [2], we found a perfect group G =2 Cio.(C4 x Ag) of order 69,120 with eight (Galois
conjugate) irreducible characters x of degree 12 such that A(x) = 511/1152 ~ 0.44. This can be
checked with the following code:

n:=69120;

G:=PerfectGroup(n,2);

ct:=CharacterTable(G);

chi:=First(Irr(ct), c -> c[1]=12);

pos:=PositionsProperty(chi, x -> x=0 or x*ComplexConjugate(x)=1);
Sum(SizesConjugacyClasses(ct){pos})/n;

In accordance with Siegel’s and Cassels’s theorems mentioned above, there exists g € G such that
x(g9) = (5 + G = 2cos(27m/5) and |x(9)|? = 37—2‘/5 in this example. In fact, there is no ¢ € G such
that x(g) is a root of unity. There are more such examples among perfect groups involving Ag, but we
did not find a smaller value of A(). It remains an open problem to determine min A(x) over all finite
groups.
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